Making string struct a bit more simple and support only utf8.

Still just ascii for now but a bit easier to manager.
Use [..]A() functions from win api to not have to convert to wide char everywhere
This commit is contained in:
2025-03-05 15:56:56 -05:00
parent 09dc26ae79
commit 764824ff24
10 changed files with 397 additions and 250 deletions

View File

@@ -1,4 +1,6 @@
#pragma once
#include <Core/Common/CoreUtils.h>
#include <Core/Memory/Utils.h>
namespace Juliet
@@ -6,21 +8,31 @@ namespace Juliet
#define ConstString(str) { const_cast<char*>((str)), sizeof(str) - 1 }
#define CStr(str) ((str).Data)
#define InplaceString(name, size) \
char name##_[size]; \
String name = { name##_, sizeof(name##_) }
char name##_[size]; \
MemSet(name##_, 0, sizeof(uint32)); \
String name = { name##_, 0 }
// Everything is Little Endian
enum class StringEncoding : uint8
{
Unknown = 0,
ASCII,
LATIN1,
UTF8,
UTF16,
UTF32,
UCS2,
UCS4,
};
// Represents a UTF-8 String.
// Not null terminated.
struct String
{
char* Data;
size_t Size;
};
struct String16
{
char16_t* Data;
size_t Size;
};
inline size_t StringLength(String str)
{
return str.Size;
@@ -28,16 +40,20 @@ namespace Juliet
inline size_t StringLength(const char* str)
{
size_t counter = 0;
size_t length = 0;
if (str)
{
while (*str++)
while (char ch = *str)
{
++counter;
if ((ch & 0xC0) != 0x80)
{
++length;
}
++str;
}
}
return counter;
return length;
}
inline bool StringIsValid(String str)
@@ -101,14 +117,20 @@ namespace Juliet
return result;
}
inline int8 StringCompareCaseInsensitive(String str1, String str2)
{
return 0;
}
// Case insensitive compare. Supports ASCII only
// TODO: Support UNICODE
extern JULIET_API int8 StringCompareCaseInsensitive(String str1, String str2);
// Do not allocate anything, you must allocate your out buffer yourself
// TODO: Version taking arena that can allocate
extern JULIET_API bool ConvertString(String from, String to, String in, String& out);
// Do not take String type because we dont know the string encoding we are going from/to
// src and dst will be casted based on the encoding.
// size will correspond to the number of characters
// Will convert \0 character if present.
extern JULIET_API bool ConvertString(StringEncoding from, StringEncoding to, const char* src, size_t srcLen,
char*& dst, size_t& dstLen, size_t dstCapacity);
extern JULIET_API bool ConvertString(String from, String to, const char* src, size_t srcLen, char*& dst,
size_t& dstLen, size_t dstCapacity);
} // namespace Juliet

View File

@@ -1,13 +1,15 @@
#pragma once
#include <Core/Common/CoreTypes.h>
#define ArraySize(array) (sizeof(array) / sizeof(array[0]))
namespace Juliet
{
inline int32 MemCompare(const void* leftValue, const void* rightValue, size_t size)
{
const unsigned char* left = static_cast<const unsigned char*>(leftValue);
const unsigned char* right = static_cast<const unsigned char*>(rightValue);
auto left = static_cast<const unsigned char*>(leftValue);
auto right = static_cast<const unsigned char*>(rightValue);
while (size && *left == *right)
{
++left;
@@ -15,4 +17,6 @@ namespace Juliet
}
return size ? *left - *right : 0;
}
}
#define MemSet memset
} // namespace Juliet

View File

@@ -7,82 +7,345 @@ namespace Juliet
{
namespace
{
enum class Encoding : uint8
{
Unknown = 0,
ASCII,
LATIN1,
UTF8,
UTF16,
UTF32,
UCS2,
UCS4,
};
constexpr char kUnknown_ASCII = '?';
constexpr int32 kUnknown_UNICODE = 0xFFFD;
struct
{
const char* name;
Encoding format;
String Name;
StringEncoding Format;
} Encodings[] = {
/* *INDENT-OFF* */ // clang-format off
{ "ASCII", Encoding::ASCII },
{ "US-ASCII", Encoding::ASCII },
{ "8859-1", Encoding::LATIN1 },
{ "ISO-8859-1", Encoding::LATIN1 },
{ ConstString("ASCII"), StringEncoding::ASCII },
{ ConstString("US-ASCII"), StringEncoding::ASCII },
{ ConstString("8859-1"), StringEncoding::LATIN1 },
{ ConstString("ISO-8859-1"), StringEncoding::LATIN1 },
#if defined(JULIET_WIN32)
{ "WCHAR_T", Encoding::UTF16 },
{ ConstString("WCHAR_T"), StringEncoding::UTF16 },
#else
{ "WCHAR_T", Encoding::UCS4 },
{ ConstString("WCHAR_T"), StringEncoding::UCS4 },
#endif
{ "UTF8", Encoding::UTF8 },
{ "UTF-8", Encoding::UTF8 },
{ "UTF16", Encoding::UTF16 },
{ "UTF-16", Encoding::UTF16 },
{ "UTF32", Encoding::UTF32 },
{ "UTF-32", Encoding::UTF32 },
{ "UCS2", Encoding::UCS2 },
{ "UCS-2", Encoding::UCS2 },
{ "UCS-2-INTERNAL", Encoding::UCS2 },
{ "UCS4", Encoding::UCS4 },
{ "UCS-4", Encoding::UCS4 },
{ "UCS-4-INTERNAL", Encoding::UCS4 },
{ ConstString("UTF8"), StringEncoding::UTF8 },
{ ConstString("UTF-8"), StringEncoding::UTF8 },
{ ConstString("UTF16"), StringEncoding::UTF16 },
{ ConstString("UTF-16"), StringEncoding::UTF16 },
{ ConstString("UTF32"), StringEncoding::UTF32 },
{ ConstString("UTF-32"), StringEncoding::UTF32 },
{ ConstString("UCS2"), StringEncoding::UCS2 },
{ ConstString("UCS-2"), StringEncoding::UCS2 },
{ ConstString("UCS-2-INTERNAL"), StringEncoding::UCS2 },
{ ConstString("UCS4"), StringEncoding::UCS4 },
{ ConstString("UCS-4"), StringEncoding::UCS4 },
{ ConstString("UCS-4-INTERNAL"), StringEncoding::UCS4 },
/* *INDENT-ON* */ // clang-format on
};
// Returns the number of codepoint case folded (lowercase equivalent in the language)
// Takes an UTF-8 codepoint (uint32) and codefold it to up to 3 uint32
// TODO Supports more than low ASCI :)
int8 CaseFoldUnicode(uint32 from, uint32* to)
{
if (from < 128)
{
// low-ASCII, easy!
if ((from >= 'A') && (from <= 'Z'))
{
*to = 'a' + (from - 'A');
return 1;
}
}
*to = from;
return 1;
}
void Step(String& inStr, size_t byteToStep)
{
Assert(inStr.Size >= byteToStep);
inStr.Data += byteToStep;
inStr.Size -= byteToStep;
}
uint32 StepUTF8(String& inStr, size_t byteToRead)
{
/*
* From rfc3629, the UTF-8 spec:
* https://www.ietf.org/rfc/rfc3629.txt
*
* Char. number range | UTF-8 octet sequence
* (hexadecimal) | (binary)
* --------------------+---------------------------------------------
* 0000 0000-0000 007F | 0xxxxxxx
* 0000 0080-0000 07FF | 110xxxxx 10xxxxxx
* 0000 0800-0000 FFFF | 1110xxxx 10xxxxxx 10xxxxxx
* 0001 0000-0010 FFFF | 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
*/
// If string is empty then it's done.
if (inStr.Size == 0)
{
return 0;
}
auto str = reinterpret_cast<const uint8*>(CStr(inStr));
const uint32 octet = byteToRead ? *str : 0;
if (octet == 0)
{
return 0;
}
if ((octet & 0x80) == 0x0) // One byte code point
{
Step(inStr, 1);
return octet;
}
Assert(false && "StepUTF8 only supports one byte codepoints for now");
return 0;
}
} // namespace
bool ConvertString(String from, String to, String in, String& out)
int8 StringCompareCaseInsensitive(String str1, String str2)
{
// TODO: Support UTF8. For now ASCII only.
uint32 left = 0;
uint32 right = 0;
while (true)
{
{
uint32 leftFolded[3];
int8 num_folded = CaseFoldUnicode(StepUTF8(str1, 4), leftFolded);
Assert(num_folded == 1); // Only one uint32 codepoint supported for now (low ascii)
left = leftFolded[0];
}
{
uint32 rightFolded[3];
int8 num_folded = CaseFoldUnicode(StepUTF8(str2, 4), rightFolded);
Assert(num_folded == 1); // Only one uint32 codepoint supported for now (low ascii)
right = rightFolded[0];
}
if (left < right)
{
return -1;
}
if (left > right)
{
return 1;
}
if (left == 0)
{
break;
}
}
return 0;
}
bool ConvertString(StringEncoding from, StringEncoding to, const char* src, size_t srcLen, char*& dst, size_t& dstLen, size_t dstCapacity)
{
Assert(src && *src);
const char* srcStr = src;
char* dstStr = dst;
uint32 character = 0;
while (srcLen > 0)
{
// Decode in character
switch (from)
{
case StringEncoding::UTF8: // Uses RFC 3629
{
auto p = reinterpret_cast<const uint8*>(srcStr);
size_t left = 0;
bool overlong = false;
if (p[0] >= 0xF0)
{
if ((p[0] & 0xF8) != 0xF0)
{
character = kUnknown_UNICODE;
}
else
{
if (p[0] == 0xF0 && srcLen > 1 && (p[1] & 0xF0) == 0x80)
{
overlong = true;
}
character = static_cast<uint32>(p[0] & 0x07);
left = 3;
}
}
else if (p[0] >= 0xE0)
{
if ((p[0] & 0xF0) != 0xE0)
{
character = kUnknown_UNICODE;
}
else
{
if (p[0] == 0xE0 && srcLen > 1 && (p[1] & 0xE0) == 0x80)
{
overlong = true;
}
character = static_cast<uint32>(p[0] & 0x0F);
left = 2;
}
}
else if (p[0] >= 0xC0)
{
if ((p[0] & 0xE0) != 0xC0)
{
character = kUnknown_UNICODE;
}
else
{
if ((p[0] & 0xDE) == 0xC0)
{
overlong = true;
}
character = static_cast<uint32>(p[0] & 0x1F);
left = 1;
}
}
else
{
if (p[0] & 0x80)
{
character = kUnknown_UNICODE;
}
else
{
character = static_cast<uint32>(p[0]);
}
}
++srcStr;
--srcLen;
if (srcLen < left)
{
Log(LogLevel::Error, LogCategory::Core, "ConvertString: Failed to convert string. Incomplete input sequence");
return false;
}
while (left--)
{
++p;
if ((p[0] & 0xC0) != 0x80)
{
character = kUnknown_UNICODE;
break;
}
character <<= 6;
character |= (p[0] & 0x3F);
++srcStr;
--srcLen;
}
if (overlong)
{
character = kUnknown_UNICODE;
}
if ((character >= 0xD800 && character <= 0xDFFF) || (character == 0xFFFE || character == 0xFFFF) ||
character > 0x10FFFF)
{
character = kUnknown_UNICODE;
}
break;
}
case StringEncoding::Unknown: Assert(false && "ConvertString: Invalid Source Format: Unknown"); break;
case StringEncoding::ASCII:
case StringEncoding::LATIN1:
case StringEncoding::UTF16:
case StringEncoding::UTF32:
case StringEncoding::UCS2:
case StringEncoding::UCS4: Assert(false && "ConvertString: Unsupported Source Format"); break;
}
// Encode out character
switch (to)
{
case StringEncoding::UTF16: // RFC 2781
{
auto p = reinterpret_cast<uint8*>(dstStr);
if (character > 0x10FFFF)
{
character = kUnknown_UNICODE;
}
if (character < 0x10000)
{
if (dstCapacity < 2)
{
Log(LogLevel::Error, LogCategory::Core, "ConvertString: Destination buffer too short to fit UTF16");
return false;
}
p[1] = static_cast<uint8>(character >> 8);
p[0] = static_cast<uint8>(character);
dstStr += 2;
dstLen += 1;
dstCapacity -= 2;
}
else
{
if (dstCapacity < 4)
{
Log(LogLevel::Error, LogCategory::Core, "ConvertString: Destination buffer too short to fit UTF16");
return false;
}
character = character - 0x10000;
uint16 word1 = 0xD800 | static_cast<uint16>((character >> 10) & 0x3FF);
uint16 word2 = 0xDC00 | static_cast<uint16>(character & 0x3FF);
p[1] = static_cast<uint8>(word1 >> 8);
p[0] = static_cast<uint8>(word1);
p[3] = static_cast<uint8>(word2 >> 8);
p[2] = static_cast<uint8>(word2);
dstStr += 4;
dstLen += 1;
dstCapacity -= 4;
}
break;
}
case StringEncoding::Unknown: Assert(false && "ConvertString: Invalid Source Format: Unknown"); break;
case StringEncoding::ASCII:
case StringEncoding::LATIN1:
case StringEncoding::UTF8:
case StringEncoding::UTF32:
case StringEncoding::UCS2:
case StringEncoding::UCS4: Assert(false && "ConvertString: Unsupported Destination Format"); break;
}
}
return true;
}
bool ConvertString(String from, String to, const char* src, size_t srcSize, char*& dst, size_t& dstSize, size_t dstCapacity)
{
Assert(in.Size <= out.Size);
Assert(StringIsValid(from));
Assert(StringIsValid(to));
Assert(StringIsValid(in));
for (size_t idx = 0; idx < ArraySize(Encodings); ++idx)
{
// First find the encoding of the strings
auto sourceFormat = StringEncoding::Unknown;
auto destFormat = StringEncoding::Unknown;
for (auto& encoding : Encodings)
{
if (StringCompareCaseInsensitive(from, encoding.Name) == 0)
{
sourceFormat = encoding.Format;
if (destFormat != StringEncoding::Unknown)
{
break;
}
}
if (StringCompareCaseInsensitive(to, encoding.Name) == 0)
{
destFormat = encoding.Format;
if (sourceFormat != StringEncoding::Unknown)
{
break;
}
}
}
}
// for (i = 0; i < SDL_arraysize(encodings); ++i) {
// if (SDL_strcasecmp(fromcode, encodings[i].name) == 0) {
// src_fmt = encodings[i].format;
// if (dst_fmt != ENCODING_UNKNOWN) {
// break;
// }
// }
// if (SDL_strcasecmp(tocode, encodings[i].name) == 0) {
// dst_fmt = encodings[i].format;
// if (src_fmt != ENCODING_UNKNOWN) {
// break;
// }
// }
// }
// if (src_fmt != ENCODING_UNKNOWN && dst_fmt != ENCODING_UNKNOWN) {
// SDL_iconv_t cd = (SDL_iconv_t)SDL_malloc(sizeof(*cd));
// if (cd) {
// cd->src_fmt = src_fmt;
// cd->dst_fmt = dst_fmt;
// return cd;
// }
// }
if (sourceFormat == StringEncoding::Unknown || destFormat == StringEncoding::Unknown)
{
return false;
}
return ConvertString(sourceFormat, destFormat, src, srcSize, dst, dstSize, dstCapacity);
}
} // namespace Juliet

View File

@@ -134,10 +134,10 @@ namespace Juliet::Win32
{
uint8 peekedMessageCount = 0;
MSG message = {};
while (PeekMessage(&message, nullptr, 0, 0, PM_REMOVE))
while (PeekMessageA(&message, nullptr, 0, 0, PM_REMOVE))
{
TranslateMessage(&message);
DispatchMessage(&message);
DispatchMessageA(&message);
// Since we peek at all messages of the program, it's possible that it stall here so we limit the number of peeked messages to an arbitrary limit
if (++peekedMessageCount > kPeekMessageLimit)
@@ -155,7 +155,7 @@ namespace Juliet::Win32
auto* windowState = GetWindowStateFromHandle(handle);
if (!windowState)
{
return CallWindowProc(DefWindowProc, handle, message, wParam, lParam);
return CallWindowProcA(DefWindowProcA, handle, message, wParam, lParam);
}
switch (message)
@@ -267,6 +267,6 @@ namespace Juliet::Win32
return returnCode;
}
return CallWindowProc(DefWindowProc, handle, message, wParam, lParam);
return CallWindowProcA(DefWindowProcA, handle, message, wParam, lParam);
}
} // namespace Juliet::Win32

View File

@@ -9,8 +9,8 @@ namespace Juliet::Win32
{
namespace
{
constexpr auto WindowClassName = L"JulietWindowClass";
constexpr LPCWSTR WindowClassPtr = WindowClassName;
constexpr auto WindowClassName = "JulietWindowClass";
constexpr LPCSTR WindowClassPtr = WindowClassName;
bool SetupWindowState(NonNullPtr<DisplayDevice> self, NonNullPtr<Window> window, HWND handle)
{
@@ -46,7 +46,7 @@ namespace Juliet::Win32
HINSTANCE instance = GetModuleHandle(nullptr);
// TODO : Put outside, we should not create a new class for each new window
WNDCLASSEX WindowClass = {};
WNDCLASSEXA WindowClass = {};
WindowClass.cbSize = sizeof(WNDCLASSEX);
WindowClass.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;
WindowClass.lpfnWndProc = Win32MainWindowCallback;
@@ -54,7 +54,7 @@ namespace Juliet::Win32
WindowClass.hCursor = LoadCursor(0, IDC_ARROW);
WindowClass.hbrBackground = static_cast<HBRUSH>(GetStockObject(LTGRAY_BRUSH));
WindowClass.lpszClassName = WindowClassName;
if (!RegisterClassEx(&WindowClass))
if (!RegisterClassExA(&WindowClass))
{
return false;
}
@@ -64,8 +64,8 @@ namespace Juliet::Win32
int x = CW_USEDEFAULT, y = CW_USEDEFAULT;
const int w = window->Width, h = window->Height;
HWND handle = CreateWindowEx(styleEx, WindowClassPtr, L"JULIET TODO PASS TITLE", style, x, y, w, h, nullptr,
nullptr, instance, nullptr);
HWND handle = CreateWindowExA(styleEx, WindowClassPtr, "JULIET TODO PASS TITLE", style, x, y, w, h, nullptr,
nullptr, instance, nullptr);
PumpEvents(self);
@@ -97,69 +97,4 @@ namespace Juliet::Win32
auto& win32State = reinterpret_cast<Window32State&>(*window->State);
::ShowWindow(win32State.Handle, SW_HIDE);
}
/*
namespace
{
LRESULT CALLBACK Win32MainWindowCallback(HWND Window, UINT Message, WPARAM WParam, LPARAM LParam);
}
void CreateOSWindow(WindowState& state, uint16 width, uint16 height)
{
auto& win32State = reinterpret_cast<Window32State&>(state);
HINSTANCE Instance = GetModuleHandle(0);
WNDCLASSA WindowClass = {};
WindowClass.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC;
WindowClass.lpfnWndProc = Win32MainWindowCallback;
WindowClass.hInstance = Instance;
WindowClass.hCursor = LoadCursor(0, IDC_ARROW);
WindowClass.hbrBackground = static_cast<HBRUSH>(GetStockObject(LTGRAY_BRUSH));
WindowClass.lpszClassName = WindowClassName;
if (RegisterClassA(&WindowClass))
{
HWND handle = CreateWindowExA(0, WindowClass.lpszClassName, "Juliet", WS_OVERLAPPEDWINDOW, CW_USEDEFAULT,
CW_USEDEFAULT, width, height, 0, 0, Instance, 0);
if (handle)
{
win32State.Handle = handle;
SetWindowLongPtr(win32State.Handle, GWLP_USERDATA, reinterpret_cast<LONG_PTR>(&win32State));
ShowWindow(handle, SW_SHOW);
win32State.IsOpen = true;
}
else
{
Assert(false);
// Win32ErrorMessage(PlatformError_Fatal,
// "Unable to open game window.");
}
}
else
{
Assert(false);
// Win32ErrorMessage(PlatformError_Fatal,
// "Unable to register game window handle.");
}
}
void DestroyOSWindow(WindowState& state)
{
auto& win32State = reinterpret_cast<Window32State&>(state);
::DestroyWindow(win32State.Handle);
UnregisterClassA(WindowClassName, ::GetModuleHandle(nullptr));
}
void UpdateOSWindowState(WindowState& state)
{
auto& win32State = reinterpret_cast<Window32State&>(state);
MSG msg = {};
while (::PeekMessage(&msg, win32State.Handle, 0, 0, PM_REMOVE))
{
::TranslateMessage(&msg);
::DispatchMessage(&msg);
}
}
*/
} // namespace Juliet::Win32

View File

@@ -5,38 +5,6 @@
namespace Juliet
{
namespace
{
// TODO : Move into string file
// Use portable code + pass the memory array into parameter and not use new
// This is from http://www.rohitab.com/discuss/topic/41257-char-to-lpcwstr/
static wchar_t* UTF8ToWideChar(const char* utf8)
{
wchar_t* w;
int len = MultiByteToWideChar(CP_UTF8, 0, utf8, -1, 0, 0);
if (len <= 0)
{
return nullptr;
}
w = new wchar_t[len];
if (!w)
{
return nullptr;
}
if (MultiByteToWideChar(CP_UTF8, 0, utf8, -1, w, len) <= 0)
{
delete[] w;
return nullptr;
}
return w;
}
} // namespace
DynamicLibrary* LoadDynamicLibrary(const char* filename)
{
if (!filename)
@@ -45,9 +13,7 @@ namespace Juliet
return nullptr;
}
LPWSTR wstr = UTF8ToWideChar(filename);
HMODULE handle = LoadLibraryW(wstr);
delete[] wstr;
HMODULE handle = LoadLibraryA(filename);
// Generate an error message if all loads failed
if (!handle)

View File

@@ -7,43 +7,13 @@
namespace Juliet::Platform
{
namespace
{
// TODO : Move into string file
// Use portable code + pass the memory array into parameter and not use new
// From: https://stackoverflow.com/questions/215963/how-do-you-properly-use-widechartomultibyte
char* WideCharToUTF8(char16_t* wcharStr)
{
char* result = nullptr;
size_t length = WideCharToMultiByte(CP_UTF8, 0, reinterpret_cast<LPCWCH>(wcharStr), -1, nullptr, 0, nullptr, nullptr);
if (length <= 0)
{
return nullptr;
}
result = new char[length];
if (!result)
{
return nullptr;
}
if (WideCharToMultiByte(CP_UTF8, 0, reinterpret_cast<LPCWCH>(wcharStr), -1, result, length, nullptr, nullptr) <= 0)
{
delete[] result;
return nullptr;
}
return result;
}
} // namespace
String GetBasePath()
{
// Allocate a buffer that could fit the module size.
// Max Path is a good start but could be bigger if the path include long path prefix
String16 buffer{ .Data = nullptr, .Size = MAX_PATH };
buffer.Data = static_cast<char16_t*>(Calloc(MAX_PATH, sizeof(WCHAR)));
if (buffer.Data == nullptr)
size_t bufferSize=MAX_PATH;
auto buffer = static_cast<char*>(Calloc(MAX_PATH, sizeof(char)));
if (buffer == nullptr)
{
return {};
}
@@ -51,14 +21,13 @@ namespace Juliet::Platform
size_t moduleFilenameLength = 0;
while (true)
{
moduleFilenameLength =
GetModuleFileNameW(nullptr, reinterpret_cast<LPWSTR>(buffer.Data), static_cast<uint32>(buffer.Size));
moduleFilenameLength = GetModuleFileNameA(nullptr, buffer, static_cast<uint32>(bufferSize));
// If the module filename length is bigger than the buffer size, we need to reallocate a bigger buffer
if (moduleFilenameLength >= buffer.Size - 1)
if (moduleFilenameLength >= bufferSize - 1)
{
buffer.Size *= 2;
buffer.Data = static_cast<char16_t*>(Realloc(buffer.Data, buffer.Size * sizeof(WCHAR)));
bufferSize *= 2;
buffer = static_cast<char*>(Realloc(buffer, bufferSize * sizeof(char)));
}
else
{
@@ -68,26 +37,23 @@ namespace Juliet::Platform
if (moduleFilenameLength == 0)
{
SafeFree(buffer.Data);
SafeFree(buffer);
Log(LogLevel::Error, LogCategory::Core, "Filesystem: Cannot locate executable path");
}
size_t idx = 0;
for (idx = moduleFilenameLength - 1; idx > 0; --idx)
{
if (buffer.Data[idx] == '\\')
if (buffer[idx] == '\\')
{
break;
}
}
Assert(idx > 0 && "Path is not absolute!");
buffer.Data[idx + 1] = '\0'; // Chop chop
buffer[idx + 1] = '\0'; // Chop chop
// TODO: Add utils to Convert to/from UTF8W
char* basePath = WideCharToUTF8(buffer.Data);
SafeFree(buffer.Data);
return WrapString(basePath);
return WrapString(buffer);
}
} // namespace Juliet::Platform

View File

@@ -8,8 +8,6 @@ namespace Juliet::Internal
{
IOStream* IOFromFile(String filename, String mode)
{
HANDLE hFile;
// "r" = reading, file must exist
// "w" = writing, truncate existing, file may not exist
// "r+"= reading or writing, file must exist
@@ -49,18 +47,11 @@ namespace Juliet::Internal
return nullptr;
}
// Prevent opening a dialog box when file doesnt exits (windows does that)
// old_error_mode = SetErrorMode(SEM_NOOPENFILEERRORBOX | SEM_FAILCRITICALERRORS);
HANDLE hFile = CreateFileA(CStr(filename), (canWrite | canRead), (canWrite) ? 0 : FILE_SHARE_READ, nullptr,
(openExisting | createAlways | openAlways), FILE_ATTRIBUTE_NORMAL, nullptr);
if (FAILED(hFile))
{
// LPWSTR str = WIN_UTF8ToStringW(filename);
// h = CreateFileW(str,
// (w_right | r_right),
// (w_right) ? 0 : FILE_SHARE_READ,
// NULL,
// (must_exist | truncate | a_mode),
// FILE_ATTRIBUTE_NORMAL,
// NULL);
// SDL_free(str);
Log(LogLevel::Error, LogCategory::Core, "IOFromFile: CreateFileW failed");
}
return nullptr;

View File

@@ -46,7 +46,7 @@ void JulietApplication::Init()
{
Log(LogLevel::Message, LogCategory::Editor, "Initializing Juliet Application...");
Log(LogLevel::Message, LogCategory::Editor, "%s", GetBasePath());
Log(LogLevel::Message, LogCategory::Editor, "%s", CStr(GetBasePath()));
GraphicsConfig config;
GraphicsDevice = CreateGraphicsDevice(config);

View File

@@ -44,6 +44,6 @@ void Compile()
int main(int argc, char* argv[])
{
auto* stream = IOFromFile(ConstString("bleeblou"), ConstString("w"));
auto* stream = IOFromFile(ConstString("XF"), ConstString("w"));
return 0;
}